이곳은 개발을 위한 베타 사이트 입니다.
기여내역은 언제든 초기화될 수 있으며, 예기치 못한 오류가 발생할 수 있습니다.

확률밀도함수

덤프버전 :


통계학
Statistics


[ 펼치기 · 접기 ]
수리통계학
기반
실해석학(측도론) · 선형대수학 · 이산수학
확률론
사건 · 가능성 · 확률변수 · 확률분포(표본분포 · 정규분포 · 이항분포 · 푸아송 분포 · 카이제곱분포 · t-분포 · z-분포 · F-분포) · 확률밀도함수 · 확률질량함수 · 조건부확률 · 조건부기댓값 · 조건부분산 · 전체 확률의 법칙 · 베이즈 정리 · 도박사의 오류 · 도박꾼의 파산 · 몬티 홀 문제 · 뷔퐁의 바늘 · 마르코프 부등식 · 체비쇼프 부등식 · 큰 수의 법칙(무한 원숭이 정리) · 중심극한정리 · 벤포드의 법칙
통계량
평균(산술평균 · 기하평균 · 조화평균 · 멱평균 · 대수평균) · 기댓값 · 편차(절대편차 · 표준편차) · 분산(공분산) · 결정계수 · 변동계수 · 상관계수 · 대푯값 · 자유도
추론통계학
가설 · 변인 · 추정량 · 점추정 · 신뢰구간 · 상관관계와 인과관계 · 실험통계학 · p-해킹 · 통계의 함정 · 그레인저 인과관계 · 신뢰도와 타당도
통계적 방법
회귀 분석 · 최소제곱법 · 분산 분석 · 주성분 분석(요인 분석) · 시계열 분석 · 패널 분석 · 2SLS · 생존 분석 · GARCH · 비모수통계학 · 준모수통계학 · 기계학습(군집 분석 · 분류 분석) · 위상 데이터분석 · 외삽법 · 메타분석 · 모델링(구조방정식)
기술통계학·자료 시각화
도표(그림그래프 · 막대그래프 · 선 그래프 · 원 그래프 · 상자 수염 그림 · 줄기와 잎 그림 · 산포도 · 산점도 · 히스토그램 · 도수분포표) · 그래프 왜곡 · 이상점





파일:external/www.cimerr.net/laboratory04.gif
정규분포의 확률 밀도 함수
1. 개요
2. 정의
3. 절대 연속 조건
4. 의미
5. 관련 문서



1. 개요[편집]


/ probability density function

연속 확률 변수를 나타내는 함수. 확률 질량 함수의 연속형 버전.


2. 정의[편집]


(절대)연속확률변수 X에 대해서 [math( F_X(x) )]가 누적분포함수 [math(\displaystyle F_X (x) =\int _{ -\infty }^{ x }{f_X(t)dt })] 일때

X의 확률밀도함수 [math( f_X(x) )]는 [math(\displaystyle f_X(x) = \frac{d}{dx}F_X(x))] 로 정의한다.

여기서 미분불가능한 지점은 기껏해야 셀 수 있어야 하며 그 지점에서의 f의 값은 어느값이어도 제한이 없으나 통상적으로
좌연속이거나 우연속이 되도록 지정해준다.

정규 분포에 사용되는 확률밀도함수는 [math(f(x) = e^{-x^2})]라는 특수함수로 주어지며[1], 가우스 적분이라는 방법으로 적분이 가능하다.


3. 절대 연속 조건[편집]


보통의 이공계에서는 (절대)라는 조건을 생략하고 그냥 가르치는 경우가 많다. 하지만 위의 정의의 식이 말이 되게 하는 f가 존재하려면 반드시 F의 절대연속성이 보장되어야 한다. 따라서 절대연속의 개념을 첨부한다.


4. 의미[편집]


어떤 확률변수 X를 완벽하게 묘사하는 함수는 누적 분포 함수(CDF) [math( F(x) )]이다.[2] 이는 X가 이산이든 연속이든 이산과 연속이 섞인 형태이든 변하지 않는 진리이다. 하지만 실제 상황이나 문제에서는 CDF를 다루는 상황보다 확률밀도함수(pdf)를 다루는 경우가 훨씬 많다. 그러므로 확률밀도함수의 개념을 이해하는 것은 매우 중요하다.

이 개념에 확률 '밀도' 함수라는 개념이 붙은 이유를 알아야 하는데 이는 확률 '질량'함수에서의 이유와 같다. 기본적으로 연속형 확률변수의 경우에는 개별 값들에 대한 확률값이 존재하지 않는다. 연속의 경우에는 반드시 구간단위로 확률이 존재할 수 밖에 없는데 확률밀도 함수는 특정 지점에 대한 값을 말한다.

직관적으로 자연스럽게 pdf의 값은 x주변의 미소구간에서의 미소확률(질량)에 대한 밀도값이라는것을 알 수 있다.
즉 선형밀도 = 질량/길이 와 동일하게 pdf = 미소확률/dx 인 것이다. 여기서 미소구간길이 dx가 부피에 해당된다.
그러므로 [math(\displaystyle{f(x)=\lim _{ \Delta x\to 0 }{ \frac { P(x\le X\le x+\Delta x) }{ \Delta x } }=\lim _{ \Delta x\to 0 }{ \frac { F(x+\Delta x)-F(x) }{ \Delta x } }=\frac { dF }{ dx }} )]이므로 정의의 그것과 일치한다.

제대로 이해하고 싶다면 수학과의 해석학과 실해석학을 이수하여 르베그 적분과 일반화된 도함수의 정의를 공부해보자.

Y축을 중심으로 위로 볼록한 함수이기 때문에 디랙 델타 함수의 주춧돌로 쓸 수 있는 함수이기도 하다.


5. 관련 문서[편집]




[1] 적분을 하면 오차함수가 나온다.[2] 확률변수의 Measureable Fuction이 누적분포함수와 본질적으로 같기 때문이다. 확률변수문서의 엄밀한 정의 참조