우선 [math( a_{n+1} = c a_{n} + f(n) (c \neq 0))] 꼴의 비동차 선형 점화식을 푸는 방법을 정리한다. 양변을 [math(c^{n+1})]로 나누면 [math( a_{n+1}c^{-n-1} = a_{n}c^{-n} + f(n)c^{-n-1})] 이므로 계차수열을 이용해 [math( a_n = c^n (a_0 + \sum f(m) c^{-m-1}))]로 풀 수 있다. 이제 본 문제로 돌아가, 차수에 대한 귀납법을 사용한다. 특성방정식이 [math(r^k+c_1r^{k-1}+\cdots+c_k=(r-\alpha)(r^{k-1}+d_1r^{k-2}+\cdots+d_{k-1}=0))]으로 인수분해된다고 하자. 그러면 [math(b_n = a_{n+1} - \alpha a_{n})]으로 정의한 수열은 점화식 [math( b_{n+k-1} + d_1 b_{n+k-2} + \cdots + d_{k-1} b_n = 0 )]을 만족한다! [math(b_n)]에 대해 귀납가설을 적용해 [math(b_n)]을 [math(n^{k-1} \beta^n)] 등의 일차결합으로 나타내고, 이제 위에서 언급한 비동차방정식 [math( a_{n+1} = \alpha a_n + b_n )]을 푼다. 본래 방정식의 특성방정식이 중근이 없으면 [math(a_n)]은 [math( \sum \alpha^{n-m} \beta^m)]과 [math(\alpha^n)] 꼴의 일차결합으로 이루어지므로 증명된다. 중근이 있다면 [math(m^{k-1} (\beta/\alpha)^m)] 꼴의 수열의 합을 구해야 하는 등 조금 더 귀찮다.