[목차] == 개요 == 자발적인 [[산화-환원 반응]]을 이용하여 화학 에너지를 전기 에너지로 전환시키는 장치. 전지의 구성은 (-)극 | 전해질 용액 | (+)극으로 구성된다. (-)극에서는 산화가, (+)극에서는 환원이 일어난다. 따라서 전자는 (-)극에서 (+)극으로 이동하고 전류는 (+)극에서 (-)극으로 이동한다. 흔히 알려진 전지로는 볼타 전지, 다니엘 전지, 2차 전지로는 납축 전지, 니켈-수소 전지, 리튬이온 전지 등이 있다. == 역사 == 이탈리아의 해부학자이자 생리학자인 루이지 갈바니가 1780년에 개구리를 해부하다가 개구리의 다리가 해부도(刀)에 닿자 경련을 일으키는 것을 보고, 이를 '동물 전기'라고 명명한다. 하지만 이에 [[알레산드로 볼타]]라는 이탈리아의 물리학자는 다른 종류의 금속에서 전기가 발생한다고 주장한다. --이에 맞서 카를로 마테우치는 개구리 다리로 만든 [[https://en.wikipedia.org/wiki/Frog_battery|개구리 배터리]]를 개발한다.-- 이러한 발견들은 앞으로의 전지의 발전에 크게 기여했고, 볼타 전지는 [[IEEE]] 마일스톤에 등록된다. == 종류 == === 볼타 전지 === 1800년 이탈리아의 물리학자 볼타는 아연판과 구리판 사이에 묽은 황산에 적신 천을 끼워 세계 최초의 전지를 만들어 낸다. [[파일:d33-00-34-03 화학 전지의 형성과 볼타 전지 (2).png]] 위 그림은 볼타가 최초로 만들어낸 전지와 약간 다른 아연판과 구리판을 묽은 황산에 넣고 도선으로 연결한 전지이다. 볼타전지에서 일어나는 반응은 다음과 같다. 산화전극(-극): [math(\rm Zn(s) \rightarrow Zn^{2+}(aq) + 2e^-)] 환원전극(+극): [math(\rm 2H^+(aq) + 2e^- \rightarrow H_2(g))] 전체반응: [math(\rm Zn(s) + 2H^+(aq) \rightarrow Zn^{2+}(aq) + H_2(g))] 볼타 전지에서는 구리 전극 표면에서 발생된 수소([math(\rm H_2)]) 기체가 전극을 점점 에워싸서, 시간이 지남에 따라 수소 이온([math(\rm H^+)])과의 접촉이 나빠져 환원되기 어려워지고 전류가 떨어지는 '''분극 현상'''이 일어나는 단점이 있었다. 당시 이 현상을 없애기 위해 수소를 산화시키는 물질들을 첨가했는데 이를 감극제, 복극제, 소극제 등으로 부른다. 대표적으로 과산화수소([math(\rm H_2O_2)]), 중크로뮴산포타슘([math(\rm K_2Cr_2O_7)]), 이산화망가니즈([math(\rm MnO_2)]) 등이 있다. === 다니엘 전지 === [[파일:d33-00-34-04 다니엘 전지와 납축 전지 (1).png]] 1836년 영국의 화학자 다니엘은 분극현상을 해결하기 위해 다니엘 전지를 고안한다. 다니엘 전지는 아연판을 황산 아연([math(\rm ZnSO_4)])에, 구리판을 황산 구리(Ⅱ)[* 구리 이온이 2가, 즉 [math(\rm Cu^{2+})]이다. 황산 이온의 식은 [math(\rm{SO_4}^{2-})]이다.]([math(\rm CuSO_4)]) 수용액에 각각 넣고, 두 용액을 '''염다리'''라는 전하 전도 매질로 연결하여 만든 전지이다. 염다리란, U자형 유리관에 반응성이 작아 다른 물질과 반응하지 않는 염화칼륨([math(\rm KCl)])같은 염과 천에 수용액을 적신 것을 함께 채워 굳힌 것. 양쪽입구의 투과성 마개를 통해 염다리 내의 이온이 이동하면서 분극 현상을 억제하여, 전하의 불균형을 해소하고 전기적으로 중성을 유지하면서 전류가 흐르게 할 수 있다. 다니엘 전지에서 일어나는 반응은 다음과 같다. 산화전극(-극): [math(\rm Zn(s) \rightarrow Zn^{2+}(aq) + 2e^-)] 환원전극(+극): [math(\rm Cu^{2+}(aq) + 2e^- \rightarrow Cu(s))] 전체반응: [math(\rm Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s))] 일반적으로 전지의 산화·환원 반응은 화학 전지 식으로 나타낸다. [math(|)]는 다른 상과의 경계, [math(||)]는 염다리를 나타내고 왼쪽에는 산화 반응에, 오른쪽에는 환원 반응에 참여하는 전극을 포함한 화학종[* 원자, 분자, 이온 등 물질의 단위로서 셀 수 있는 것들.]을 표시한다. 예를 들어 다니엘 전지의 화학 전지 식은 [math(\rm(-)~Zn(s)\mid ZnSO_4(aq)\mid\mid CuSO_4(aq)\mid Cu(s)~(+))]로 나타낸다. 참고로 볼타 전지와 다니엘 전지를 합쳐서 갈바니 전지 혹은 볼타 전지라고 부르기도 하며, 해당 형태의 전지들 자체는 부피 문제로 거의 쓰이지 않지만 [[2차 전지]]와 리튬의 산화 전위와 관련된 연구가 진행되며 [[연료전지]]의 작동 원리 일부로 편입되었다. 연료전지와 관련된 보다 자세한 사항은 [[전기분해]] 문서를 참고. == 실용 전지 == 1차 전지와 2차 전지가 있는데, 이 둘의 차이점은 간단히 말하자면 재충전 가능성의 유무이다. === 1차 전지 === 재충전이 불가능한 전지이며, 억지로 재충전을 시키면 액이 누출되는 등의 사고가 발생할 수 있다. 자세한 것은 [[건전지]] 문서 참조. === [[2차 전지]] === 위에서 언급했듯이 1차 전지와의 차이점은 재충전이 가능하다는 점을 들 수 있다. 원리는 화학적 에너지를 전기에너지로 방출 시킬 수 있고(방전 상태), 이 상태에 전기를 공급하면 다시 화학 에너지의 형태로 전환하여 저장할 수 있다는 것이다. 대표적으로 납축전지, 니켈-수소 전지 등이 널리 쓰인다. 자세한 내용은 [[2차 전지]] 문서와 [[http://if-blog.tistory.com/5879|여기 참조]]. == 전지전위 == 화Ⅱ 수능에서 빠지지 않고 출제되는 문제 중 하나가 바로 이 전지전위 구하기이다.[* 개정 화학2에서 빠졌다.] '''전지전위'''란 사전적인 의미에서는 전지에서 두 전극 사이의 전위차를 의미한다. 특히, 전해질의 농도가 [math(\rm1\,M)]([math(\rm M)]은 [[몰 농도]]), 압력이 [math(1)]기압[* 보통 표준 상태(standard state)의 압력이라고 하면 [math(1)]기압[math(\,=\rm1\,atm=101\,325\,Pa)]이 아닌 [math(\rm1\,bar=100\,000\,Pa)]을 의미하는데, 전지 전위 값은 이 표준이 정립되는 1982년보다 훨씬 이전에 만들어져서 널리 쓰이고 있었기 때문에 [math(\rm1\,atm)]조건을 이용한다.], 온도가 [math(\rm25\,\degree\!C)]일 때의 전지전위를 '''표준 전지 전위'''라 하고 이를 [math(E\degree)]로 나타낸다. 또한, 전극에서 일어나는 환원 반응에 대한 전위를 '''환원 전위'''라 하고, 전해질 농도가 [math(\rm1\,M)], 기체의 압력이 [math(1)]기압, 온도가 [math(\rm25\,\degree\!C)]일 때의 환원 전위를 '''표준 환원 전위'''라 한다. 아마 [[산화-환원 반응]]의 동시성은 익히 들어 알 것이다. 산화-환원 반응의 이 특성 때문에 어느 한쪽의 반쪽 전지만 분리하여 전위를 측정할 수는 없는 노릇. 따라서 반쪽 전지의 전위를 측정할 기준이 필요하게 되는데, 이 것이 바로 '''표준 수소 전극''' 이다. 표준 수소 전극이란 수소 이온의 농도가 [math(\rm1\,M)]인 수용액에 백금 전극을 꽂고 1기압, [math(\rm25\,\degree\!C)]의 수소기체를 주위에 채운 구조로 [math(E\degree= 0.00\rm\,V)]이다. 이를 기준으로 표준 환원 전위의 값을 정하였는데, 표준 환원 전위가 (+)값이면 [math(\rm H^+)]보다 전자를 받기 쉽고, (-)값이면 [math(\rm H^+)]보다 전자를 받기 어렵다. [[파일:표준환원전위표.png]] 표준 전지 전위는 두 반쪽 전지의 표준 환원 전위를 이용하여 구할 수 있다. 환원 전극(cathode)의 표준 환원 전위를 [math(E\degree_{\rm cat})], 산화 전극(anode)의 표준 환원 전위를 [math(E\degree_{\rm an})]이라 나타내면 [math(E\degree)]는 다음과 같이 정의된다. [math(E\degree=E\degree_{\rm cat} - E\degree_{\rm an})] 예로, 아까 본 다니엘 전지에서의 표준 전지 전위를 구해보자. [math(\begin{aligned} E\degree_{\rm cat}&:{\rm Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)} &\quad E\degree = +0.34{\rm\,V} \\ E\degree_{\rm an}&:{\rm Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)} &\quad E\degree =-0.76{\rm\,V}\end{aligned})] 여기서, 표준 환원 전위가 큰 쪽인 구리 반쪽 전지에서는 환원 반응이, 표준 환원 전위가 작은 쪽인 아연 반쪽 전지에서는 산화 반응이 일어나는 것을 확인할 수 있다. 그리고 위의 식을 이용한다. [math(E\degree=E\degree_{\rm cat} - E\degree_{\rm an} = \rm0.34\,V -(-0.76\,V) = 1.10\,V)] 그리고 이를 통해 반응의 자발성을 판단 할 수 있는데, 전지 반응의 전지 전위와 자유 에너지 변화 사이에는 다음 관계가 성립하기 때문이다. [math(\Delta G\degree = -nFE\degree)][* 여기서 [math(n)]은 전지 반응에 관여한 전자의 [[물질량]]이고 [math(F)]는 패러데이 상수로 [[아보가드로 상수]] [math(N_{\rm A})]와 기본 전하량 [math(e)]의 곱, 즉 [math(F=N_{\rm A}e=\rm96\,485.3321\,C/mol)]이다.] {{{#!folding [증명] ||
* 계가 받은 일을 [math(w)], 외부에 한 일을 [math(W)], 전압을 [math(V)], 전류를 [math(I)], 일을 한 시간을 [math(t)]로 나타내면 전기적 일은 다음 관계를 만족한다.[br][math(w=-W=-VIt)] * 이때 전하량 [math(Q)]는 [math(Q=It=Fn)]를 만족하며 표준 자유 에너지는 표준 상태에서 가역 과정에서의 일로 전환될 수 있는 에너지이므로 자유 에너지 변화량은 일의 양이 된다. 즉 [math(w_{\rm rev}=\Delta G\degree = -VIt = -VFn)] 한편 [math(V = E\degree)]이므로 [math(\Delta G\degree = -VFn = -nFE\degree)]이 된다. || }}} 따라서 [math(E\degree>0)]이면 [math(\Delta G\degree<0)]이므로 전지 반응이 자발적으로 일어나고, [math(E\degree<0)]이면 [math(\Delta G\degree>0)]이므로 반응이 일어나기 위해선 외부 에너지가 필요하다. 여기서 흔히들 실수하는 것이 표준 전지 전위를 무조건 (+)값으로만 맞추려 한다거나 아예 산화-환원에 관여하는 물질을 잘못 선정하는 것인데, 꼭 표준 환원 전위를 꼼꼼히 따져서 무엇이 산화하고 무엇이 환원하는지, 전자와 전류는 어느 방향으로 흐르는지 등을 판별해내야 한다. == [[네른스트 식|Nernst 식]] == 표준상태가 아닐 때의 전지전위/전극전위를 구하기 위한 식이다. [math(\Delta G=\Delta G\degree + RT\ln Q)]이고 [math(\Delta G=-nFE)] 이므로 [math(-nFE=-nFE\degree +RT\ln Q)]에서 네른스트 식 [math(E=E\degree-\dfrac{RT}{nF}\ln Q)]가 얻어진다. 여기서 [math(n)]은 명시된 화학반응이 [math(\rm1\,mol)] 진행될 때 이동한 전자의 [[물질량]]이다. 여기서 [math(T=298.15\rm\,K)] 조건과 각각의 상수를 대입하고 [math(\ln Q=\dfrac{\log Q}{\log e}=\ln10\log Q\fallingdotseq2.3206\log Q)]로 로그의 밑을 변환해주면 [math(E\fallingdotseq E\degree - \dfrac{0.059\,16}n \log Q)]의 네른스트 식을 얻을 수 있다. == 관련 문서 == * [[산화 환원 반응]] * [[전기 분해]] [[분류:배터리 팩]]