[include(틀:해석학·미적분학)] [목차] == 개요 == {{{+2 重積分 / multiple integral}}} [[정적분]]의 개념을 확장하여 [[독립변수]]가 2개 이상인 [[함수]]를 [[적분]]하는 것이다. 중적분의 개념은 공간의 부피, 질량, 무게 중심, 표면적 등등에 쓰인다. 이론상 한 차원씩 차근차근 계산하면 되지만, 웬만한 적분이 잘 될 리가 없다. 이 때문에 편의를 위해 [[좌표계]]를 변환해주는데 2차원에선 [[극좌표]], 3차원에서는 [[구면좌표계]]와 [[원통좌표계]]를 쓴다. 정규분포 함수의 적분값도 이중적분을 극좌표 변환하는 꼼수를 써서 풀 수 있다. 의외로 과정 잘만 밟으면 학부 1학년 때도 연습문제로 나올만큼 어렵지 않은 내용이다. 물론 그냥 무조건 변환해주면 되는 건 아니라 [[야코비안]]이라는 개념을 배워야 제대로 쓸 수 있다. 야코비안의 행렬식의 절댓값을 이용하는데, 쉽게 말하면 치환(변환)했으니 구간도 바뀌는데 이때의 처음 구간과 치환 후 구간을 보정해주는 값이라 생각하면 된다. 정규분포 함수에서 보이는 [[가우스 적분|[math(\displaystyle e^{-x^2})]]]의 경우는, 야코비안의 극좌표 변형식을 쓰면 된다. 극좌표를 쓰고 싶지 않다면, 복소해석학을 이용해서 우회하는 방법도 존재하지만, 여기서는 중적분을 이용하기 위해 극좌표 변형식을 이용한다. 자세한 적분방법은 다음과 같다. 아니면 '[[가우스 적분]]' 문서를 참조하여도 좋다. > 먼저 평면 [math(\displaystyle \mathbb{R}^2)] 위에서의 특이적분 [math(\displaystyle \mathbb{I})]를 이렇게 정의한다. > [math(\displaystyle \mathbb{I} = \iint_{\mathbb{R}^2} e^{-(x^2+y^2)}dA = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)}dydx)] > [math(\displaystyle \quad =\lim_{a\to\infty}\iint_{D_a} e^{-(x^2+y^2)} dA)] > ([math(\displaystyle D_a)]는 원점을 중심으로 하여, 반지름이 [math(\displaystyle a)]인 원판이다.) > > 이 때, [math(\displaystyle \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)}dydx)]에서, [math(\displaystyle (x,y)\rightarrow(r, \theta))]로의 극좌표 변환을 취하면, 이 식은 이렇게 바뀐다. > > [math(\displaystyle x^2+y^2=r^2)]이므로, [math(\displaystyle \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)}dydx = \int_{0}^{2\pi} \int_{0}^{\infty}e^{-r^2}rdrd\theta)] > (야코비안 극좌표 변형식을 사용하면, [math(\displaystyle \frac{\partial (x, y) }{\partial (r,\theta )}=r(r>0))]이므로, [math(\displaystyle dA=dxdy=\left\vert\frac{\partial (x,y)}{\partial (r,\theta )}\right\vert drd\theta =rdrd\theta)] > [math(\displaystyle \int -2re^{-r^2} dr = e^{-r^2} +C)]([math(\displaystyle C)]는 적분상수)이므로, [math(\displaystyle \int_{0}^{2\pi} \int_{0}^{\infty}e^{-r^2}rdrd\theta = -\frac{1}{2}\int_{0}^{2\pi} e^{-r^2}\vert^{r=\infty}_{r=0} d\theta = -\frac{2\pi}{2}\left[ e^{-r^2} \right]^{r=\infty}_{r=0} = -\pi (0-1) =\pi)] > > 이제 이 식을 가지고 [math(\displaystyle \int_{-\infty}^{\infty}e^{-x^2}dx)]를 풀어보자. > [math(\displaystyle \quad =\lim_{a\to\infty}\iint_{S_a} e^{-(x^2+y^2)} dA)] > ([math(\displaystyle S_a)]는 원점을 중심으로 하여, [math(\displaystyle (a, -a),\ (a, a),\ (-a,-a)\ ,(-a,a))]의 4개의 점을 꼭지점으로 삼는 정사각형 구간이다.) >'''푸비니의 정리'''의 특이케이스중 하나로, 적분구간이 [math(\displaystyle C=[a,b]\times[c,d]\in\mathbb{R}^2)]인 직사각형 영역에 대해서, > [math(\displaystyle \iint f(x)g(y) dC=\int_{a}^{b} f(x)dx\int_{c}^{d} g(y)dy)]임이 알려져 있다.[* 단, 완벽하게 일원다차방정식끼리의 곱으로만 인수분해가 되어야 한다. 예를 들어서 [math(\displaystyle x^{2}y^{2}+x^{2}y+3xy^{2}+2x^{2}+5y^{2}+3xy+6x+5y+10)]은 [math(\displaystyle \left(x^{2}+3x+5\right)\left(y^{2}+y+2\right))]로 인수분해가 되어서, 각각 [math(\displaystyle x,y)]에 대한 일원이차방정식으로 인수분해된다. 하지만 [math(\displaystyle x^{2}y^{3}+xy^{3}+2x^{3}+2x^{2}y)]의 경우는 인수분해를 하면 [math(\displaystyle x\left(x+y\right)\left(y^{2}+2x\right))]이 되어서, '''이원'''일차([math(\displaystyle x+y)])/'''이원'''이차([math(\displaystyle y^{2}+2x)])방정식의 형태가 드러나게 된다. 이 경우는 인수분해 적분을 적용할 수 없다.] > 이걸 바탕으로, 주어진 위의 특이적분을 분리하면, 다음과 같이 분리된다. > > [math(\displaystyle \lim_{a\to\infty}\iint_{S_a} e^{-(x^2+y^2)} dA=\lim_{a\to\infty} \left( \int_{-a}^{a} e^{-x^2} dx \int_{-a}^{a} e^{-y^2} dy \right) )] > 각각에 대해 적분구간과 적분변수가 동일하므로, 이 식은 다시 이렇게 고칠 수 있다. > [math(\displaystyle \lim_{a\to\infty} \left( \int_{-a}^{a} e^{-x^2} dx \int_{-a}^{a} e^{-y^2} dy \right) = \lim_{a\to\infty} \left( \int_{-a}^{a} e^{-x^2} dx \right)^{2} )]가 되는데, 위에서[br][math(\displaystyle \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)}dydx=\pi)]임을 보였다. 즉, [math(\displaystyle \int_{-\infty}^{\infty}e^{-x^2}dx=\mathbb{Y})]라고 하면, [math(\displaystyle \mathbb{Y}^2=\pi)]이므로,[br][math(\displaystyle \int_{-\infty}^{\infty}e^{-x^2}dx=\sqrt{\pi})]라는걸 확인할 수 있다. 비전공자들은 헷갈릴 수 있지만 적분을 단순히 두 번 세 번 하는 것과는 다르다! 적분을 연속으로 하는 것은 반복적분(iterated integral)이라고 한다. 대신 푸비니의 정리에 의해 특정 조건에서 중적분을 반복적분으로 계산할 수 있다. 아래 문단 참조. 일반적으로 미지수가 하나인 함수의 적분이 넓이를 의미하듯이, 미지수가 2개인 함수의 적분은 부피를 의미한다. 미지수가 그 이상 있는 함수에 대해서는 초부피(Hypervolume)라는 개념이 도입된다. 이것도 나중에 배우는 것 중 하나인데, 적분을 가지고 2계 변수 함수에서 그래프의 길이를 구할 수 있듯 이중적분을 가지고 3계 변수 함수의 겉넓이를 구할 수도 있다. 매개변수 u, v로 표현된 [math(\displaystyle r(u, v))]라는 곡면의 겉넓이는 [math(\displaystyle \iint 1\,dS)]로 구할 수 있으며, 앞서 설명한 3계 변수 함수의 겉넓이는 이 [[면적분]]의 특수한 형태로 볼 수 있다. [math(\displaystyle \int_L 1\,dx)]는 해당 적분구간의 길이를 나타냄을 쉽게 알 수 있다. 이를 일반화 해보면, 면적분 [math(\displaystyle \int_D 1\,dA)]는 [math(\displaystyle D)]의 넓이, 곡면적분 [math(\displaystyle \int_S 1\,dS)]는 [math(\displaystyle S)]의 겉넓이, 부피적분 [math(\displaystyle \int_V 1\,dV)]는 [math(\displaystyle V)]의 부피이다. 중적분을 이용하여 부피를 구하는 것에 대한 자세한 내용은 [[부피#s-3.7]] 문서 참고. == 기호 == {{{#!wiki style="text-align: center" [math(\displaystyle\LARGE\int\iint\iiint\oint\oiint\oiiint)]}}} 중적분에 쓰이는 기호들. 여기서 적분기호의 개수는 변수의 개수, 고리는 닫힌 공간의 구간을 의미한다.[* 대표적으로 [[맥스웰 방정식]]의 적분형 좌변에서 볼 수 있다.] [[선적분]]의 경우 ∫와 ∮, [[면적분]]의 경우 ∬, [[곡면적분]]의 경우 ∬와 ∯(∮도 매우 자주 쓰인다.), [[부피적분]]의 경우 ∭, ∰를 자주 볼 수 있다. 고리는 어렵게 생각할 것 없이 매우 쉬운 개념이다. 고리에 화살표로 방향을 표시해 놓는 극소수의 경우가 있지만, 대부분의 경우 아무 표시가 없다. 고리는 닫힌 적분범위 내에서 양의 방향으로 적분하라는 소리다. 닫힌 적분범위의 예를 들자면, [[선적분]]의 경우 대체로 시계 반대 방향의 방향을 갖는 어떠한 폐곡선에서 적분하는 것이고, [[곡면적분]]의 경우 곡면 안쪽이 아닌 바깥쪽을 향하도록 폐곡면을 잡으라는 것이다. == 푸비니의 정리 == 중적분을 계산하는 방법 중 하나. [math(S=[a,b]\times[c,d])]인 직사각형 영역이고 [math(f:S \rightarrow R)]이 [[유계]]이고 적분 가능한 함수라고 할 때, [math(\displaystyle \begin{aligned} \iint_S {f(x, y)} dA &=\int_{a}^{b} {\left( \int_{c}^{d}{f(x, y)}dy \right) }dx \\ &= \int_{c}^{d} {\left( \int_{a}^{b}{f(x, y)}dx \right) }dy \end{aligned})] 로 계산할 수 있다는 정리. 즉, 이중적분을 반복적분 형태의 일차원 적분으로 바꿀 수 있다는 것이다. 이를 통해 미적분학의 기본정리를 적용할 수 있다. 또한 위의 예시에서 언급한 구간분리는 [math([a, b]\times[c,d])]라는 직사각형 구간 내에서 [math(\displaystyle \begin{aligned} \iint_S {f(x, y)} dA &=\int_{a}^{b} {\left( \int_{c}^{d}{f(x, y)}dy \right) }dx \\ &= \int_{c}^{d} {\left( \int_{a}^{b}{f(x, y)}dx \right) }dy \end{aligned})]일 때,[br][math(f(x, y)=g(x)h(y))]로 대입하면 [math(\displaystyle \begin{aligned} \iint_S {f(x, y)} dA &=\int_{a}^{b} {\left( \int_{c}^{d}{g(x)h(y)}dy \right) }dx \\ &= \int_{c}^{d} {\left( \int_{a}^{b}{g(x)h(y)}dx \right) }dy \end{aligned})]가 되는데,[br][math(g(x))]는 [math(y)]에 대하여, [math(h(y))]는 [math(x)]에 대하여 상수취급 할 수 있어서 [math(\displaystyle \begin{aligned} \iint_S {f(x, y)} dA &=\int_{a}^{b} {\left(g(x)\int_{c}^{d}{h(y)}dy \right) }dx \\ &= \int_{c}^{d} {\left(h(y) \int_{a}^{b}{g(x)}dx \right) }dy \end{aligned})]로 바꿀 수 있기 때문이다. == 관련 문서 == * [[미분적분학]] * [[공업수학]] * [[선적분]], [[면적분]], [[곡면적분]], [[부피적분]] * [[그레이디언트]], [[컬]], [[다이버전스]] * [[선적분의 기본정리]]([[그레이디언트]] 정리), [[그린 정리]], [[스토크스 정리]], [[발산 정리]] * [[길이]], [[넓이]], [[겉넓이]], [[부피]], [[4차원|초부피]] [[분류:해석학(수학)]][[분류:미적분]]