[include(틀:양자역학)] [include(틀:천문학)] [목차] == 개요 == {{{+1 Zeeman effect}}} [[자기장]]이 원자의 축퇴된 에너지 준위를 갈라지게 하는 현상. 스핀-궤도 결합에 의한 내부 자기장에 비해 약한 자기장에서는 스핀-궤도 결합(spin-orbit coupling)이 주요한 항이지만, 강한 자기장이 가해지면 스핀-외부 자기장 간의 상호작용이 주요한 항이 된다. 물론 중간 정도 되는 자기장에서는 한쪽을 주요 항으로 두는 근사를 할 수 없으니 유의하자. 한편, 강한 자기장으로 갈수록 에너지 준위가 서로 겹치지 않으려 하는 non-crossing theorem이 적용된다. 1896년 네덜란드 [[레이던 대학교|레이던 대학]]의 [[피터르 제이만]]이 발견하였다. === 해밀토니언 === 전자는 다음과 같이 궤도 [[각운동량]] [math(\mathbf{L})]에 의한 [[자기 모멘트]] [math(\boldsymbol{\mu}_{L})]과 스핀 각운동량 [math(\mathbf{S})]에 의한 자기 모멘트 [math(\boldsymbol{\mu}_{S})]를 갖는다. {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \boldsymbol{\mu}_{L}&=-\frac{g_{l} e}{2m}\mathbf{L} \\ \boldsymbol{\mu}_{S}&=-\frac{g_{e} e}{2m}\mathbf{S} \end{aligned} )]}}} 전자의 총 자기 모멘트는 [math(\boldsymbol{\mu}=\boldsymbol{\mu}_{L}+\boldsymbol{\mu}_{S})]임에 따라 외부 자기장 [math(\bf{B})]에 대한 보정 해밀토니언은 아래와 같다. {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \mathcal{H}_{Z}'&=-\boldsymbol{\mu} \boldsymbol{\cdot} \mathbf{B} \\&=\frac{e}{2m}(g_{l}\mathbf{L}+g_{e}\mathbf{S}) \boldsymbol{\cdot} \mathbf{B} \end{aligned} )]}}} 위 식에서 Dirac particle인 경우에 [math( g_l =1 )]및 [math( g_e = 2 )]로 놓는다.[* 물론 실제 값은 미묘한 차이가 있는데, [math(\displaystyle g_l =1 - {m_e \over m_N})]로 알려져 있고, CODATA 2018 에선 [math( g_e = 2.002 319 304 362 56(35))]의 값을 쓰도록 권장하고 있다. [[뮤온]]의 경우 실험적 결과와 이론적 결과가 차이가 있으며, 관심이 있다면 g-2 실험을 참고하자. 여기에서는 단순 근사적인 값을 이용한다.] {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \mathcal{H}_{Z}'&=-\boldsymbol{\mu} \boldsymbol{\cdot} \mathbf{B} \\&=\frac{e}{2m}(\mathbf{L}+2\mathbf{S}) \boldsymbol{\cdot} \mathbf{B} \end{aligned} )]}}} 외부 자기장의 방향을 [math(z)]축 방향이라 하면 최종적으로 보정 해밀토니언은 아래와 같다. {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \mathcal{H}_{Z}'&=-\boldsymbol{\mu} \boldsymbol{\cdot} \mathbf{B} \\&=\frac{e}{2m}(L_{z}+2S_{z})B \end{aligned} )]}}} == 에너지 보정량 == === 강한 자기장(strong field) === 외부 자기장이 원자 내부의 자기장(스핀-궤도 결합)보다 크므로 미세 구조보다 외부 자기장의 효과가 커진다. 따라서 주 섭동항은 미세 구조에 의한 것이 아닌 외부 자기장에 따른 것이 된다. 위 문단에서와 같이 보정 해밀토니언은 다음과 같다. {{{#!wiki style="text-align: center" [br][math( \displaystyle \mathcal{H}_{Z}' =\frac{e}{2m}(L_{z}+2S_{z})B )]}}} [math(\mathcal{H}_{Z}')]과 [math(L^{2})], [math(S^{2})], [math(L_{z})], [math(S_{z})]는 서로 교환되므로 섭동을 잘 기술하기 위한 좋은 양자수의 집합은 [math(\{l,\,s,\,m_{l},\,m_{s} \})]가 된다. 다만, 총 각운동량 [math(\mathbf{J}=\mathbf{L}+\mathbf{S})]에 대하여 [math(J^{2})], [math(J_{z})]는 [math(\mathcal{H}_{Z}')]과 교환되지 않으므로 [math(j)], [math(m_{j})]는 좋은 양자수가 아니다. 따라서 섭동항의 에너지는 {{{#!wiki style="text-align: center" [br][math( \begin{aligned} E_{Z}^{(1)}&= \left \\ &=\mu_B (m_l + 2m_s)B \end{aligned} )]}}} 이때, [math(\mu_{B}=e\hbar/2m)]으로 보어 마그네톤이다. 결과적으로 강한 자기장이 걸리는 경우에는 양자수 합 [math(m_l + 2m_s)]에 의해서 축퇴(degenerated)된 상태들이 풀린다. === 약한 자기장(weak field) === 외부 자기장의 세기가 원자 내부의 자기장(스핀-궤도 결합)보다 약한 경우 외부 자기장에 의한 것이 아닌 미세 구조가 주요한 섭동항이 된다. 따라서 좋은 양자수의 집합은 주요한 섭동항과 같은 [math(\{ l,\,s,\,j,\,m_{j} \})]가 된다. 그러나 위 문단에서 나온 보정 해밀토니언은 이러한 양자수로 기술할 수 없다. 따라서 총 각운동량 [math(\mathbf{J}=\mathbf{L}+\mathbf{S})]와 관련된 항으로 바꾸어보자. {{{#!wiki style="text-align: center" [br][math( \displaystyle \mathbf{L}+2\mathbf{S}=\mathbf{J}+\mathbf{S} )]}}} 이고, 이 케이스의 경우 자기장이 스핀-궤도 결합을 깰 정도는 아니므로 [math(\mathbf{S})]는 여전히 [math(\mathbf{J})] 주위를 회전한다. 따라서 평균값 계산에는 [math(\mathbf{J})]와 평행한 성분만 그 취급이 중요해지므로[* 사실 초등적인 설명이고, 이것을 완전히 기술하기 위해선 더 많은 양자역학 지식이 필요하다. 식 자체는 [[정사영|벡터 사영]]을 기술하는 식이다.] {{{#!wiki style="text-align: center" [br][math( \displaystyle \mathbf{S}\to \frac{\mathbf{J} \boldsymbol{\cdot} \mathbf{S} }{J^{2}}\mathbf{J} )]}}} 로 대치하여 계산을 한다. 한편, [math(\mathbf{L}=\mathbf{J-S})]이므로 양변을 제곱하여 정리하면 {{{#!wiki style="text-align: center" [br][math(\begin{aligned}\mathbf{J} \boldsymbol{\cdot} \mathbf{S}&=\frac{1}{2}\left(J^{2}-L^{2}+S^{2}\right)\\\\\therefore\mathbf{J+S}&=\left[ 1+\frac{J^{2}-L^{2}+S^{2}}{2J^{2}} \right] \mathbf{J}\end{aligned})]}}} 보정 해밀토니언은 위 결과를 종합하여 아래와 같이 쓸 수 있다. {{{#!wiki style="text-align: center" [br][math( \displaystyle \mathcal{H}_{Z}' =\frac{e}{2m} \left[ 1+\frac{J^{2}-L^{2}+S^{2}}{2J^{2}} \right] J_{z}B )]}}} 에너지 보정량은 다음과 같다. ||<:>[math( \displaystyle \begin{aligned} E_{Z}^{(1)}&=\langle l\,s\,j\,m_{j}| \mathcal{H}_{Z}' | l\,s\,j\,m_{j} \rangle \\ &=\frac{e \hbar}{2m} \cdot m_{j} \left[1+\frac{j(j+1)-l(l+1)+s(s+1)}{2j(j+1)} \right]B \end{aligned} )]|| 이때 대괄호 항을 란데 [math(g)] 인자(Landé [math(g)]-factor) [math(g_{J})]로 정의하고, 보어 마그네톤 [math(\mu_{B}=e\hbar/2m)]을 사용하면 다음과 같이 쓸 수 있다. {{{#!wiki style="text-align: center" [br][math( \displaystyle \begin{aligned} E_{Z}^{(1)}&=\mu_{B}g_{J}m_{j}B \end{aligned} )]}}} == 관련 실험 == ||
{{{#!wiki style="margin: -5px -10px" [youtube(TJrej02BmQA)] }}}|| 제이만 효과를 잘 보여주는 실험 영상. 네온 기체에 가하는 자기장을 최대 [math(11{,}300\,{\rm Gauss}=1.13\,{\rm T})]까지 증가시킴에 따라 네온의 선 스펙트럼이 갈라짐을 확인할 수 있다. [[분류:물리학]][[분류:양자역학]]