[include(틀:전자기학)] [목차] == 개요 == {{{+1 Maxwell stress tensor}}} 맥스웰 변형 텐서 또는 맥스웰 스트레스 텐서는 물질 외부에서 작용하는 전자기력에 의해 물질이 받는 변형력을 2차 텐서로 간단하게 나타낸 것이다. 쉽게 말해서 물체 외부의 [[전자기장]]과 물체가 받는 [[응력]] 즉, 역학적 모멘텀(momentum)의 상관관계를 나타내었다 할 수 있다. 어떤 물체의 내부에 전하와 전류밀도가 존재한다면 당연히 외부의 전자기장에 의해서 힘을 받게 될 것이다. 허나, 물질의 형태나 전자기장의 방향 등에 의해서 그 응력의 크기와 방향은 다 다를 것이다. 따라서 '물질이 어느 방향 전자기장에 의해서 어느 방향으로 얼마만큼 응력을 받는가?'를 표하려면 바로 이 맥스웰 변형 텐서를 사용해야 한다. == 유도 == 전자기장으로 인해 전하밀도와 전류밀도를 가진 물체가 단위 부피당 받는 힘을 [[로런츠 힘]]를 사용하면 다음을 얻는다. {{{#!wiki style="text-align: center" [br][math(\displaystyle \mathbf{f} = \rho \mathbf{E} + \mathbf{J} \times \mathbf{B} )] }}} [math(\mathbf{f})]는 단위 부피 당 받는 힘인 점에 유의한다. [math(\rho)], [math(\mathbf{E})], [math(\mathbf{B})], [math(\mathbf{J})]는 각각 전하 밀도, [[전기장]], [[자기장]], 전류 밀도이다. 맥스웰-앙페르 법칙 {{{#!wiki style="text-align: center" [br][math(\displaystyle \boldsymbol{\nabla}\times \mathbf{B}=\mu_{0}\mathbf{J}+\varepsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t} )] }}} 과 전기장에 대한 가우스 법칙 {{{#!wiki style="text-align: center" [br][math(\displaystyle \boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{E}=\frac{\rho}{\varepsilon_{0}} )] }}} 를 사용하면 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \mathbf{f} &= \varepsilon_{0}(\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{E}) \mathbf{E} + \!\left(\frac{1}{\mu_{0}} \boldsymbol{\nabla} \times \mathbf{B}-\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \right) \times \mathbf{B} \\&=\varepsilon_{0}(\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{E}) \mathbf{E}+\frac{1}{\mu_{0}}(\boldsymbol{\nabla} \times \mathbf{B}) \times \mathbf{B}-\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} \\&=\varepsilon_{0}(\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{E}) \mathbf{E}+\frac{1}{\mu_{0}}\!\left[ (\mathbf{B} \boldsymbol{\cdot} \boldsymbol{\nabla})\mathbf{B}-\frac{1}{2} \boldsymbol{\nabla}B^{2} \right] -\varepsilon_{0} \frac{\partial }{\partial t} (\mathbf{E} \times \mathbf{B})+\varepsilon_{0} \mathbf{E} \times \frac{\partial \mathbf{B}}{\partial t} \end{aligned} )] }}} 패러데이 법칙 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \boldsymbol{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \end{aligned} )] }}} 에서 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \mathbf{f} &=\varepsilon_{0}(\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{E}) \mathbf{E}+\frac{1}{\mu_{0}}\!\left[ (\mathbf{B} \boldsymbol{\cdot} \boldsymbol{\nabla})\mathbf{B}-\frac{1}{2} \boldsymbol{\nabla}B^{2} \right] -\varepsilon_{0} \frac{\partial }{\partial t} (\mathbf{E} \times \mathbf{B})-\varepsilon_{0} \mathbf{E} \times (\boldsymbol{\nabla} \times \mathbf{E}) \\&=\varepsilon_{0} \!\left[ (\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{E}) \mathbf{E}+(\mathbf{E}\boldsymbol{\cdot}\boldsymbol{\nabla} ) \mathbf{E}-\frac{1}{2}\boldsymbol{\nabla} E^2\right]+\frac{1}{\mu_{0}}\!\left[ (\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{B}) \mathbf{B}+(\mathbf{B}\boldsymbol{\cdot}\boldsymbol{\nabla} ) \mathbf{B}-\frac{1}{2}\boldsymbol{\nabla} B^2\right]-\frac{1}{c^2}\frac{\partial \mathbf{S}}{\partial t} \end{aligned} )] }}} 여기서 자기장에 대한 가우스 법칙 [math(\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{B}=0)]과 [math(\varepsilon_{0} \mu_{0}=c^{-2} )], 진공에서 자기장 세기 [math(\mathbf{H}=\mathbf{B}/\mu_{0})]를 썼다. [math(\mathbf{S})]는 [[포인팅 벡터]]이다. 각 항은 대칭적으로 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} (\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{V}) \mathbf{V}+(\mathbf{V}\boldsymbol{\cdot}\boldsymbol{\nabla} ) \mathbf{V}-\frac{1}{2}\boldsymbol{\nabla} V^2 \end{aligned} )] }}} 가 포함되어 있는데, 성분별로 쓰면 {{{#!wiki style="text-align: center" [br][math(\begin{aligned} \!\left[ (\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{V}) \mathbf{V}+(\mathbf{V}\boldsymbol{\cdot}\boldsymbol{\nabla} ) \mathbf{V}-\frac{1}{2}\boldsymbol{\nabla} V^2\right ]_{j} &=\frac{\partial V_{i}}{\partial x_{i}}V_{j}+ V_{i}\frac{\partial V_{j}}{\partial x_{i}}-\frac{1}{2}\frac{\partial V^{2}}{\partial x_{j}} \\&=\frac{\partial }{\partial x_{i}}(V_{i}V_{j})-\frac{1}{2}\frac{\partial x_{i}}{\partial x_{j}}\frac{\partial V^{2}}{\partial x_{i}}\\&=\frac{\partial }{\partial x_{i}}(V_{i}V_{j})-\frac{1}{2}\delta_{ij} \frac{\partial V^{2}}{\partial x_{i}} \\ &=\frac{\partial }{\partial x_{i}}\!\left[V_{i}V_{j}-\frac{1}{2}\delta_{ij}V^{2} \right] \\&=\boldsymbol{\nabla} \boldsymbol{\cdot} V_{ij} \end{aligned})]}}} [math(\delta_{ij})]는 [[크로네커 델타]]이다. 따라서 이 식과 나온 식을 매칭시켜보면, 텐서가 하나 나오는 데, 그것을 맥스웰 변형 텐서라 한다. {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} T_{ij}=\varepsilon_{0}\!\left[E_{i}E_{j}-\frac{1}{2}\delta_{ij}E^{2} \right]+\frac{1}{\mu_{0}}\!\left[B_{i}B_{j}-\frac{1}{2}\delta_{ij}B^{2} \right] \end{aligned} )] }}} 따라서 위 식을 다음과 같이 예쁘게 쓸 수 있다. {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \mathbf{f} &=\boldsymbol{\nabla} \boldsymbol{\cdot} \pmb{\mathsf{T} } -\frac{1}{c^2}\frac{\partial \mathbf{S}}{\partial t} \end{aligned} )] }}} == 전자기장의 운동량 == 뉴턴 제 2법칙에 따르면 운동량과 힘은 다음과 같은 관계가 있다. {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \mathbf{F}=\mathbf{\dot{p}} \end{aligned} )] }}} 마찬가지로 운동량 밀도 [math(\mathcal{P}={\rm d}\mathbf{p}/{\rm d}V)]를 도입하면 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \dot{\mathcal{P}} &=\boldsymbol{\nabla} \boldsymbol{\cdot} \pmb{\mathsf{T} } -\frac{1}{c^2}\frac{\partial \mathbf{S}}{\partial t} \end{aligned} )] }}} 부피 적분을 하면 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \mathbf{\dot{p}} &=\iiint_{V} \boldsymbol{\nabla} \boldsymbol{\cdot} \pmb{\mathsf{T} }\,{\rm d}V -\iiint_{V}\frac{1}{c^2}\frac{\partial \mathbf{S}}{\partial t}\,{\rm d}V \\ &=\oiint_{S} \pmb{\mathsf{T} } \boldsymbol{\cdot} {\rm d}\mathbf{a} -\frac{{\rm d}}{{\rm d}t}\iiint_{V}\frac{\mathbf{S}}{c^2}\,{\rm d}V \\ &=-\oiint_{S} (-\pmb{\mathsf{T} }) \boldsymbol{\cdot} {\rm d}\mathbf{a} -\frac{{\rm d}}{{\rm d}t}\iiint_{V}\frac{\mathbf{S}}{c^2}\,{\rm d}V \end{aligned} )] }}} 이것은 자세히 보면 포인팅의 정리와 비슷한 꼴이다. 따라서 다음을 알 수 있다. * 첫 적분은 면을 통해 유입되거나 유출되는 운동량을 의미한다. * 두 번째 적분은 전자기장이 자체적으로 가진 운동량을 의미한다. 따라서 전자기장이 가진 운동량의 밀도는 [math(\mathbf{S}/c^2)]이라 볼 수 있다. == 활용 == 이 맥스웰 변형 텐서를 사용하는 대표적인 예로는 압전소자의 역압전 효과를 들 수 있다. [math(\rm{PbZrO_3})], [math(\rm{PbTiO_3})] 같은 몇몇 압전 소자들은 결정 내부의 전하분포가 비대칭적인데, 이때 외부에서 전기장이 가해지는 경우 비대칭적인 전하분포로 인해 결정의 격자상수가 변화하면서 실제로 물체의 형태가 변화하게 된다. 이러한 현상을 통해서 STM의 팁 거리를 조정하는 것과 같이 작은 단위의 길이도 세밀하게 조정할 수 있게 된다. == 관련 문서 == * [[에너지-스트레스 텐서]] [[분류:물리학]]